Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase.

نویسندگان

  • Hugh A Addlesee
  • C Neil Hunter
چکیده

The bchP gene product of Rhodobacter sphaeroides is responsible for the reduction of the isoprenoid moiety of bacteriochlorophyll (Bchl) from geranylgeraniol (GG) to phytol; here, we show that this enzyme also catalyzes the reduction of the isoprenoid moiety of bacteriopheophytin (Bphe). In contrast, we demonstrate that a newly identified homolog of this gene in Rhodospirillum rubrum encodes an enzyme, GG-Bphe reductase, capable of reducing the isoprenoid moiety of Bphe only. We propose that Rhodospirillum rubrum is a naturally occurring bchP mutant and that an insertion mutation may have been the initial cause of a partial loss of function. Normal BchP function can be restored to Rhodospirillum rubrum, creating a new transconjugant strain possessing Bchl esterified with phytol. We speculate on the requirement of Rhodospirillum rubrum for phytylated Bphe and on a potential link between the absence of LH2 and of phytylated Bchl from the wild-type bacterium. The identification of a second role for the fully functional BchP in catalyzing the synthesis of phytylated Bphe strongly suggests that homologs of this enzyme may be similarly responsible for the synthesis of phytylated pheophytin in organisms possessing photosystem 2. In addition to bchP, other members of a photosynthesis gene cluster were identified in Rhodospirillum rubrum, including a bchG gene, demonstrated to encode a functional Bchl synthetase by complementation of a Rhodobacter sphaeroides mutant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reaction center – light harvesting 1 complex from a Rhodospirillum rubrum mutant with altered esterifying pigments: characterization by optical spectroscopy and cryo-electron microscopy

Introduction of the bchP gene from Rhodobacter sphaeroides encoding geranylgeranyl reductase into Rhodospirillum rubrum alters the esterification of the bacteriochlorophylls so that phytol is used instead of geranylgeraniol. The resulting transconjugant strain of Rs. rubrum grows photosynthetically, showing that phytolated Bchla can substitute for the native pigment in both the reaction center ...

متن کامل

A reaction center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments: characterization by optical spectroscopy and cryo-electron microscopy.

Introduction of the bchP gene from Rhodobacter sphaeroides encoding geranylgeranyl reductase into Rhodospirillum rubrum alters the esterification of the bacteriochlorophylls so that phytol is used instead of geranylgeraniol. The resulting transconjugant strain of Rs. rubrum grows photosynthetically, showing that phytolated Bchla can substitute for the native pigment in both the reaction center ...

متن کامل

Physical mapping and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides.

The bacteriochlorophyll of the purple photosynthetic bacterium Rhodobacter sphaeroides is esterified with phytol. The presence of this alcohol moiety is essential for the correct assembly of the photosynthetic apparatus. Despite this, and the fact that R. sphaeroides is widely used for the study of structure-function relationships in photosynthesis, the molecular genetics of the steps in which ...

متن کامل

The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum.

Isolated photosynthetic reaction center from the bacterium Rhodospirillum rubrum was extracted with acetone-methanol. Its main pigments were identified as bacteriochlorophyll, bacteriopheophytin, and spirilloxanthin. The extinction coefficients of these pigments in acetone-methanol were determined. Quantitative spectroscopic analysis of the dry acetone-methanol extracts indicated a bacteriochlo...

متن کامل

Glycine 100 in the dinitrogenase reductase of Rhodospirillum rubrum is required for nitrogen fixation but not for ADP-ribosylation.

Dinitrogenase reductase (Rr2) is required for reduction of the molybdenum dinitrogenase in the nitrogen fixation reaction and is the target of posttranslational regulation in Rhodospirillum rubrum. This posttranslational regulation involves the ADP-ribosylation of Rr2. To study the structural requirements for these two functions of Rr2, i.e., activity and regulation, two site-directed mutations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 6  شماره 

صفحات  -

تاریخ انتشار 2002